Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sensors (Basel) ; 24(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339720

RESUMEN

This study investigates the feasibility and functionality of accelerometer and gyroscope sensors for gesture-based interactions in mobile app user experience. The core of this innovative approach lies in introducing a dynamic and intuitive user interaction model with the device sensors. The Android app developed for this purpose has been created for its use in controlled experiments. Methodologically, it was created as a stand-alone tool to both capture quantitative (time, automatically captured) and qualitative (behavior, collected with post-task questionnaires) variables. The app's setting features a set of modules with two levels each (randomized presentation applied, minimizing potential learning effects), allowing users to interact with both sensor-based and traditional touch-based scenarios. Preliminary results with 22 participants reveal that tasks involving sensor-based interactions tend to take longer to complete when compared to the traditional ones. Remarkably, many participants rated sensor-based interactions as a better option than touch-based interactions, as seen in the post-task questionnaires. This apparent discrepancy between objective completion times and subjective user perceptions requires a future in-depth exploration of factors influencing user experiences, including potential learning curves, cognitive load, and task complexity. This study contributes to the evolving landscape of mobile app user experience, emphasizing the benefits of considering the integration of device sensors (and gesture-based interactions) in common mobile usage.

2.
Noncoding RNA ; 9(6)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37987369

RESUMEN

OBJECTIVES: microRNAs (miRNAs) present in the gingival crevicular fluid (GCF) of patients with chronic periodontitis may serve as biomarkers of periodontal disease. The aim of this study was to perform a miRNA-sequencing study of all miRNAs present in GCF, comparing miRNA expression level profiles between advanced chronic periodontitis (CP) patients and healthy subjects (HS). MATERIALS AND METHODS: GCF samples were collected from the single-rooted teeth of patients with severe CP (n = 11) and of HS (n = 12). miRNAs were isolated from GCF using an miRNeasy Serum/Plasma kit(Qiagen GmbH, Hilden, Germany). Reverse transcription polymerase chain reaction (qRT-PCR) was used to determine the expression levels of miRNA candidates involved in periodontal pathogenesis. RESULTS: Of all the sequenced miRNAs, miR-199, miR-146a, miR-30a, and miR-338 were identified as best representing the CP patient samples. The validation study identified miR-199 as the most powerful biomarker used to define periodontitis. CONCLUSIONS: Upon sequencing all known miRNAs in GCF for the first time, we uncovered several potential biomarkers to define periodontitis. Identifying miRNAS in the GCF using high-throughput approaches will clarify the role of these molecules in periodontitis and provide biomarkers with potential applications.

3.
Front Microbiol ; 14: 1176582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840745

RESUMEN

The exploration of Mars is one of the main objectives of space missions since the red planet is considered to be, or was in the past, potentially habitable. Although the surface of Mars is now dry and arid, abundant research suggests that water covered Mars billions of years ago. Recently, the existence of liquid water in subglacial lakes has been postulated below the South pole of Mars. Until now, experiments have been carried out on the survival of microorganisms in Martian surface conditions, but it remains unknown how their adaptation mechanisms would be in the Martian cryosphere. In this work, two bacterial species (Bacillus subtilis and Curtobacterium flacumfaciens) were subjected to a simulated Martian environment during 24 h using a planetary chamber. Afterward, the molecular machinery of both species was studied to investigate how they had been modified. Proteomes, the entire set of proteins expressed by each bacterium under Earth (named standard) conditions and Martian conditions, were compared using proteomic techniques. To establish this evaluation, both the expression levels of each protein, and the variation in their distribution within the different functional categories were considered. The results showed that these bacterial species followed a different strategy. The Bacillus subtilis resistance approach consisted of improving its stress response, membrane bioenergetics, degradation of biomolecules; and to a lesser extent, increasing its mobility and the formation of biofilms or resistance endospores. On the contrary, enduring strategy of Curtobacterium flacumfaciens comprised of strengthening the cell envelope, trying to protect cells from the extracellular environment. These results are especially important due to their implications for planetary protection, missions to Mars and sample return since contamination by microorganisms would invalidate the results of these investigations.

4.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762127

RESUMEN

Endolithic microorganisms, ranging from microeukaryotes to bacteria and archaea, live within the cracks and crevices of rocks. Deception Island in Antarctica constitutes an extreme environment in which endoliths face environmental threats such as intense cold, lack of light in winter, high solar radiation in summer, and heat emitted as the result of volcanic eruptions. In addition, the endolithic biome is considered the harshest one on Earth, since it suffers added threats such as dryness or lack of nutrients. Even so, samples from this hostile environment, collected at various points throughout the island, hosted diverse and numerous microorganisms such as bacteria, fungi, diatoms, ciliates, flagellates and unicellular algae. These endoliths were first identified by Scanning Electron Microscopy (SEM). To understand the molecular mechanisms of adaptation of these endoliths to their environment, genomics techniques were used, and prokaryotic and eukaryotic microorganisms were identified by metabarcoding, sequencing the V3-V4 and V4-V5 regions of the 16S and 18S rRNA genes, respectively. Subsequently, the sequences were analyzed by bioinformatic methods that allow their metabolism to be deduced from the taxonomy. The results obtained concluded that some of these microorganisms have activated the biosynthesis routes of pigments such as prodigiosin or flavonoids. These adaptation studies also revealed that microorganisms defend themselves against environmental toxins by activating metabolic pathways for the degradation of compounds such as ethylbenzene, xylene and dioxins and for the biosynthesis of antioxidant molecules such as glutathione. Finally, these Antarctic endolithic microorganisms are of great interest in astrobiology since endolithic settings are environmentally analogous to the primitive Earth or the surfaces of extraterrestrial bodies.


Asunto(s)
Antioxidantes , Archaea , Regiones Antárticas , Archaea/genética , Biología Computacional , Ecosistema
5.
J Transl Med ; 21(1): 344, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221624

RESUMEN

BACKGROUND: As leading contributors to worldwide morbidity and mortality, sepsis and septic shock are considered a major global health concern. Proactive biomarker identification in patients with sepsis suspicion at any time remains a daunting challenge for hospitals. Despite great progress in the understanding of clinical and molecular aspects of sepsis, its definition, diagnosis, and treatment remain challenging, highlighting a need for new biomarkers with potential to improve critically ill patient management. In this study we validate a quantitative mass spectrometry method to measure circulating histone levels in plasma samples for the diagnosis and prognosis of sepsis and septic shock patients. METHODS: We used the mass spectrometry technique of multiple reaction monitoring to quantify circulating histones H2B and H3 in plasma from a monocenter cohort of critically ill patients admitted to an Intensive Care Unit (ICU) and evaluated its performance for the diagnosis and prognosis of sepsis and septic shock (SS). RESULTS: Our results highlight the potential of our test for early diagnosis of sepsis and SS. H2B levels above 121.40 ng/mL (IQR 446.70) were indicative of SS. The value of blood circulating histones to identify a subset of SS patients in a more severe stage with associated organ failure was also tested, revealing circulating levels of histones H2B above 435.61 ng/ml (IQR 2407.10) and H3 above 300.61 ng/ml (IQR 912.77) in septic shock patients with organ failure requiring invasive organ support therapies. Importantly, we found levels of H2B and H3 above 400.44 ng/mL (IQR 1335.54) and 258.25 (IQR 470.44), respectively in those patients who debut with disseminated intravascular coagulation (DIC). Finally, a receiver operating characteristic curve (ROC curve) demonstrated the prognostic value of circulating histone H3 to predict fatal outcomes and found for histone H3 an area under the curve (AUC) of 0.720 (CI 0.546-0.895) p < 0.016 on a positive test cut-off point at 486.84 ng/mL, showing a sensitivity of 66.7% and specificity of 73.9%. CONCLUSIONS: Circulating histones analyzed by MS can be used to diagnose SS and identify patients at high risk of suffering DIC and fatal outcome.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Histonas , Enfermedad Crítica , Pronóstico , Diagnóstico Precoz , Espectrometría de Masas
6.
Front Microbiol ; 14: 1110091, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778858

RESUMEN

Over the last years, perennial ice deposits located within caves have awakened interest as places to study microbial communities since they represent unique cryospheric archives of climate change. Since the beginning of the twentieth century, the temperature has gradually increased, and it is estimated that by the end of this century the increase in average temperature could be around 4.0°C. In this context of global warming the ice deposits of the Pyrenean caves are undergoing a significant regression. Among this type of caves, that on the Cotiella Massif in the Southern Pyrenees is one of the southernmost studied in Europe. These types of caves house microbial communities which have so far been barely explored, and therefore their study is necessary. In this work, the microbial communities of the Pyrenean ice cave A294 were identified using metabarcoding techniques. In addition, research work was carried out to analyze how the age and composition of the ice affect the composition of the bacterial and microeukaryotic populations. Finally, the in vivo effect of climate change on the cellular machinery that allow microorganisms to live with increasing temperatures has been studied using proteomic techniques.

7.
Front Immunol ; 14: 1333705, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235139

RESUMEN

Introduction: Sepsis patients experience a complex interplay of host pro- and anti-inflammatory processes which compromise the clinical outcome. Despite considering the latest clinical and scientific research, our comprehension of the immunosuppressive events in septic episodes remains incomplete. Additionally, a lack of data exists regarding the role of epigenetics in modulating immunosuppression, subsequently impacting patient survival. Methods: To advance the current understanding of the mechanisms underlying immunosuppression, in this study we explored the dynamics of DNA methylation using the Infinium Methylation EPIC v1.0 BeadChip Kit in leukocytes from patients suffering from sepsis, septic shock, and critically ill patients as controls, within the first 24 h after admission in the Intensive Care Unit of a tertiary hospital. Results and discussion: Employing two distinct analysis approaches (DMRcate and mCSEA) in comparing septic shock and critically ill patients, we identified 1,256 differentially methylated regions (DMRs) intricately linked to critical immune system pathways. The examination of the top 100 differentially methylated positions (DMPs) between septic shock and critically ill patients facilitated a clear demarcation among the three patient groups. Notably, the top 6,657 DMPs exhibited associations with organ dysfunction and lactate levels. Among the individual genes displaying significant differential methylation, IL10, TREM1, IL1B, and TNFAIP8 emerged with the most pronounced methylation alterations across the diverse patient groups when subjected to DNA bisulfite pyrosequencing analysis. These findings underscore the dynamic nature of DNA methylation profiles, highlighting the most pronounced alterations in patients with septic shock, and revealing their close association with the disease.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Choque Séptico/genética , Epigenoma , Enfermedad Crítica , Sepsis/genética , Sepsis/diagnóstico , Fenotipo , Leucocitos , Terapia de Inmunosupresión
8.
Front Microbiol ; 13: 825632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547132

RESUMEN

Glaciers constitute a polyextremophilic environment characterized by low temperatures, high solar radiation, a lack of nutrients, and low water availability. However, glaciers located in volcanic regions have special characteristics, since the volcanic foci provide them with heat and nutrients that allow the growth of microbial communities highly adapted to this environment. Most of the studies on these glacial ecosystems have been carried out in volcanic environments in the northern hemisphere, including Iceland and the Pacific Northwest. To better know, the microbial diversity of the underexplored glacial ecosystems and to check what their specific characteristics were, we studied the structure of bacterial communities living in volcanic glaciers in Deception Island, Antarctica, and in the Kamchatka peninsula. In addition to geographic coordinates, many other glacier environmental factors (like volcanic activity, altitude, temperature, pH, or ice chemical composition) that can influence the diversity and distribution of microbial communities were considered in this study. Finally, using their taxonomic assignments, an attempt was made to compare how different or similar are the biogeochemical cycles in which these microbiomes are involved.

9.
Front Microbiol ; 13: 841359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35591995

RESUMEN

The old debate of nature (genes) vs. nurture (environmental variables) is once again topical concerning the effect of climate change on environmental microorganisms. Specifically, the Polar Regions are experiencing a drastic increase in temperature caused by the rise in greenhouse gas emissions. This study, in an attempt to mimic the molecular adaptation of polar microorganisms, combines proteomic approaches with a classical microbiological analysis in three bacterial species Shewanella oneidensis, Shewanella frigidimarina, and Psychrobacter frigidicola. Both shewanellas are members of the same genus but they live in different environments. On the other hand, Shewanella frigidimarina and Psychrobacter frigidicola share the same natural environment but belong to a different genus. The comparison of the strategies employed by each bacterial species estimates the contribution of genome vs. environmental variables in the adaptation to temperature. The results show a greater versatility of acclimatization for the genus Shewanella with respect to Psychrobacter. Besides, S. frigidimarina was the best-adapted species to thermal variations in the temperature range 4-30°C and displayed several adaptation mechanisms common with the other two species. Regarding the molecular machinery used by these bacteria to face the consequences of temperature changes, chaperones have a pivoting role. They form complexes with other proteins in the response to the environment, establishing cooperation with transmembrane proteins, elongation factors, and proteins for protection against oxidative damage.

10.
Health Sci Rep ; 5(2): e558, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35317418

RESUMEN

Background and Aims: To evaluate the expression of microRNA 132 (miR-132) in fetuses with normal growth and in fetuses with late-onset growth restriction (FGR). Methods: In a prospective cohort study, 48 fetuses (24 with late-onset FGR and 24 with normal growth) were scanned with Doppler ultrasound after 34 weeks to measure the umbilical artery and middle cerebral artery pulsatility indices and followed until birth. Subsequently, blood samples from the umbilical cord were collected to evaluate the expression of miR-132 by means of Real-time quantitative polymerase chain reaction, determining the existence of normality cut-offs and associations with birth weight (BW) centile, cerebroplacental ratio multiples of the median (CPR MoM), and intrapartum fetal compromise (IFC). Results: In comparison with normal fetuses, late-onset FGR fetuses showed upregulation of miR-132 (33.94 ± 45.04 vs. 2.88 ± 9.32 2-ddC t, p < 0.001). Using 5 as a cut-off we obtained a sensitivity of 50% and a specificity of 96% for the diagnosis of FGR, while for IFC these values were respectively 27% and 73%. Expression of miR-132 was associated with BW centile but not with CPR MoM. Finally, the best detection of IFC was achieved combining miR-132 expression and CPR MoM (AUC = 0.69, p < 0.05). Conclusion: Fetuses with late-onset FGR show upregulation of miR-132. Further studies are needed to investigate the role of miR-132 in the management of late-onset FGR.

11.
Biomedicines ; 10(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35327327

RESUMEN

(1) Background: Sepsis is a life-threatening condition caused by an abnormal host response to infection that produces altered physiological responses causing tissue damage and can result in organ dysfunction and, in some cases, death. Although sepsis is characterized by a malfunction of the immune system leading to an altered immune response and immunosuppression, the high complexity of the pathophysiology of sepsis requires further investigation to characterize the immune response in sepsis and septic shock. (2) Methods: This study analyzes the immune-related responses occurring during the early stages of sepsis by comparing the amounts of cytokines, immune modulators and other endothelial mediators of a control group and three types of severe patients: critically ill non-septic patients, septic and septic shock patients. (3) Results: We showed that in the early stages of sepsis the innate immune system attempts to counteract infection, probably via neutrophils. Conversely, the adaptive immune system is not yet fully activated, either in septic or in septic shock patients. In addition, immunosuppressive responses and pro-coagulation signals are active in patients with septic shock. (4) Conclusions: The highest levels of IL-6 and pyroptosis-related cytokines (IL-18 and IL-1α) were found in septic shock patients, which correlated with D-dimer. Moreover, endothelial function may be affected as shown by the overexpression of adhesion molecules such as s-ICAM1 and E-Selectin during septic shock.

12.
Epigenetics ; 17(11): 1345-1356, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34969362

RESUMEN

To compare the expression of microRNA-185-5p (miR-185-5p) in normal foetuses and in foetuses with late-onset growth restriction (FGR) and to determine the factors influencing this expression. In a prospective study, 40 foetuses (22 of them with late-onset FGR and 18 with normal growth) were scanned with Doppler ultrasound after week 35 and followed until birth. Subsequently, blood samples from umbilical cords were collected after delivery to evaluate the expression of miR-185-5p using real-time qPCR. Finally, multivariable regression analysis was applied to determine the clinical and ultrasonographic factors influencing miR-185-5p expression in both normal and late-onset FGR foetuses. In comparison with normal foetuses, late-onset FGR foetuses expressed upregulation of miR-185-5p (2.26 ± 1.30 versus 1.27 ± 1.03 2^-ddCt, P = 0.011). Multivariable regression analysis confirmed that cerebroplacental ratio (P < 0.05) was the only determinant of this overexpression. FGR foetuses overexpress miR-185-5p in relation to brain-sparing. Future studies will be needed to investigate the role of miR-185 in the management of late-onset FGR.


Asunto(s)
Retardo del Crecimiento Fetal , MicroARNs , Femenino , Humanos , Retardo del Crecimiento Fetal/diagnóstico por imagen , Retardo del Crecimiento Fetal/genética , Estudios Prospectivos , Metilación de ADN , Biomarcadores , Feto , Encéfalo/diagnóstico por imagen , MicroARNs/genética
13.
Front Microbiol ; 12: 714537, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867842

RESUMEN

Glaciers and their microbiomes are exceptional witnesses of the environmental conditions from remote times. Climate change is threatening mountain glaciers, and especially those found in southern Europe, such as the Monte Perdido Glacier (northern Spain, Central Pyrenees). This study focuses on the reconstruction of the history of microbial communities over time. The microorganisms that inhabit the Monte Perdido Glacier were identified using high-throughput sequencing, and the microbial communities were compared along an altitudinal transect covering most of the preserved ice sequence in the glacier. The results showed that the glacial ice age gradient did shape the diversity of microbial populations, which presented large differences throughout the last 2000 years. Variations in microbial community diversity were influenced by glacial conditions over time (nutrient concentration, chemical composition, and ice age). Some groups were exclusively identified in the oldest samples as the bacterial phyla Fusobacteria and Calditrichaeota, or the eukaryotic class Rhodophyceae. Among groups only found in modern samples, the green sulfur bacteria (phylum Chlorobi) stood out, as well as the bacterial phylum Gemmatimonadetes and the eukaryotic class Tubulinea. A patent impact of human contamination was also observed on the glacier microbiome. The oldest samples, corresponding to the Roman Empire times, were influenced by the beginning of mining exploitation in the Pyrenean area, with the presence of metal-tolerant microorganisms. The most recent samples comprise 600-year-old ancient ice in which current communities are living.

14.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576097

RESUMEN

Sepsis management remains one of the most important challenges in modern clinical practice. Rapid progression from sepsis to septic shock is practically unpredictable, hence the critical need for sepsis biomarkers that can help clinicians in the management of patients to reduce the probability of a fatal outcome. Circulating nucleoproteins released during the inflammatory response to infection, including neutrophil extracellular traps, nucleosomes, and histones, and nuclear proteins like HMGB1, have been proposed as markers of disease progression since they are related to inflammation, oxidative stress, endothelial damage, and impairment of the coagulation response, among other pathological features. The aim of this work was to evaluate the actual potential for decision making/outcome prediction of the most commonly proposed chromatin-related biomarkers (i.e., nucleosomes, citrullinated H3, and HMGB1). To do this, we compared different ELISA measuring methods for quantifying plasma nucleoproteins in a cohort of critically ill patients diagnosed with sepsis or septic shock compared to nonseptic patients admitted to the intensive care unit (ICU), as well as to healthy subjects. Our results show that all studied biomarkers can be used to monitor sepsis progression, although they vary in their effectiveness to separate sepsis and septic shock patients. Our data suggest that HMGB1/citrullinated H3 determination in plasma is potentially the most promising clinical tool for the monitoring and stratification of septic patients.


Asunto(s)
Biomarcadores/metabolismo , Cromatina/metabolismo , Choque Séptico/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Citrulina/metabolismo , Estudios de Cohortes , Femenino , Proteína HMGB1/metabolismo , Histonas/metabolismo , Humanos , Inmunoensayo , Masculino , Ratones , Persona de Mediana Edad , Nucleoproteínas/sangre , Proyectos Piloto
15.
Biomolecules ; 11(8)2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34439820

RESUMEN

Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.


Asunto(s)
Adaptación Fisiológica/genética , Antibacterianos/biosíntesis , Proteínas Anticongelantes/biosíntesis , Bacterias/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Redes y Vías Metabólicas/genética , Proteínas Anticongelantes/genética , Regiones Árticas , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biotecnología/métodos , Chlorophyta/genética , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Frío , Biología Computacional/métodos , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/genética , Hongos/genética , Hongos/crecimiento & desarrollo , Hongos/metabolismo , Humanos , Lípidos/biosíntesis , Lípidos/genética , Fluidez de la Membrana , Metagenoma , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/genética
16.
Front Immunol ; 12: 622599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33659006

RESUMEN

Background: Neonatal sepsis is a systemic condition widely affecting preterm infants and characterized by pro-inflammatory and anti-inflammatory responses. However, its pathophysiology is not yet fully understood. Epigenetics regulates the immune system, and its alteration leads to the impaired immune response underlying sepsis. DNA methylation may contribute to sepsis-induced immunosuppression which, if persistent, will cause long-term adverse effects in neonates. Objective: To analyze the methylome of preterm infants in order to determine whether there are DNA methylation marks that may shed light on the pathophysiology of neonatal sepsis. Design: Prospective observational cohort study performed in the neonatal intensive care unit (NICU) of a tertiary care center. Patients: Eligible infants were premature ≤32 weeks admitted to the NICU with clinical suspicion of sepsis. The methylome analysis was performed in DNA from blood using Infinium Human Methylation EPIC microarrays to uncover methylation marks. Results: Methylation differential analysis revealed an alteration of methylation levels in genomic regions involved in inflammatory pathways which participate in both the innate and the adaptive immune response. Moreover, differences between early and late onset sepsis as compared to normal controls were assessed. Conclusions: DNA methylation marks can serve as a biomarker for neonatal sepsis and even contribute to differentiating between early and late onset sepsis.


Asunto(s)
Inflamación/genética , Sepsis Neonatal/genética , Inmunidad Adaptativa/genética , Estudios de Cohortes , Metilación de ADN , Diagnóstico Diferencial , Femenino , Genoma , Humanos , Inmunidad Innata/genética , Recién Nacido , Recien Nacido Prematuro , Masculino , Sepsis Neonatal/diagnóstico , Proyectos Piloto , Estudios Prospectivos
17.
Microorganisms ; 9(2)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672948

RESUMEN

It has been demonstrated that the englacial ecosystem in volcanic environments is inhabited by active bacteria. To know whether this result could be extrapolated to other Antarctic glaciers and to study the populations of microeukaryotes in addition to those of bacteria, a study was performed using ice samples from eight glaciers in the South Shetland archipelago. The identification of microbial communities of bacteria and microeukaryotes using 16S rRNA and 18S rRNA high throughput sequencing showed a great diversity when compared with microbiomes of other Antarctic glaciers or frozen deserts. Even the composition of the microbial communities identified in the glaciers from the same island was different, which may be due to the isolation of microbial clusters within the ice. A gradient in the abundance and diversity of the microbial communities from the volcano (west to the east) was observed. Additionally, a significant correlation was found between the chemical conditions of the ice samples and the composition of the prokaryotic populations inhabiting them along the volcanic gradient. The bacteria that participate in the sulfur cycle were those that best fit this trend. Furthermore, on the eastern island, a clear influence of human contamination was observed on the glacier microbiome.

18.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008715

RESUMEN

In a prospective study, 48 fetuses were evaluated with Doppler ultrasound after 34 weeks and classified, according to the cerebroplacental ratio (CPR) and estimated fetal weight (EFW), into fetuses with normal growth and fetuses with late-onset fetal growth restriction (LO-FGR). Overexpression of miRNAs from neonatal cord blood belonging to LO-FGR fetuses, was validated by real-time PCR. In addition, functional characterization of overexpressed miRNAs was performed by analyzing overrepresented pathways, gene ontologies, and prioritization of synergistically working miRNAs. Three miRNAs: miR-25-3p, miR-185-5p and miR-132-3p, were significantly overexpressed in cord blood of LO-FGR fetuses. Pathway and gene ontology analysis revealed over-representation of certain molecular pathways associated with cardiac development and neuron death. In addition, prioritization of synergistically working miRNAs highlighted the importance of miR-185-5p and miR-25-3p in cholesterol efflux and starvation responses associated with LO-FGR phenotypes. Evaluation of miR-25-3p; miR-132-3p and miR-185-5p might serve as molecular biomarkers for the diagnosis and management of LO-FGR; improving the understanding of its influence on adult disease.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Transducción de Señal/genética , Retardo del Crecimiento Fetal/genética , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Humanos , MicroARNs/metabolismo , Modelos Biológicos , Reproducibilidad de los Resultados
19.
Bone ; 140: 115563, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32768685

RESUMEN

Scoliosis is defined as the three-dimensional (3D) structural deformity of the spine with a radiological lateral Cobb angle (a measure of spinal curvature) of ≥10° that can be caused by congenital, developmental or degenerative problems. However, those cases whose etiology is still unknown, and affect healthy children and adolescents during growth, are the commonest form of spinal deformity, known as adolescent idiopathic scoliosis (AIS). In AIS management, early diagnosis and the accurate prediction of curve progression are most important because they can decrease negative long-term effects of AIS treatment, such as unnecessary bracing, frequent exposure to radiation, as well as saving the high costs of AIS treatment. Despite efforts made to identify a method or technique capable of predicting AIS progression, this challenge still remains unresolved. Genetics and epigenetics, and the application of machine learning and artificial intelligence technologies, open up new avenues to not only clarify AIS etiology, but to also identify potential biomarkers that can substantially improve the clinical management of these patients. This review presents the most relevant biomarkers to help explain the etiopathogenesis of AIS and provide new potential biomarkers to be validated in large clinical trials so they can be finally implemented into clinical settings.


Asunto(s)
Cifosis , Escoliosis , Adolescente , Inteligencia Artificial , Niño , Epigénesis Genética/genética , Humanos , Escoliosis/etiología , Escoliosis/genética , Columna Vertebral
20.
Epigenomics ; 12(7): 617-646, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32396480

RESUMEN

Sepsis is a life-threatening condition that occurs when the body responds to an infection damaging its own tissues. Sepsis survivors sometimes suffer from immunosuppression increasing the risk of death. To our best knowledge, there is no 'gold standard' for defining immunosuppression except for a composite clinical end point. As the immune system is exposed to epigenetic changes during and after sepsis, research that focuses on identifying new biomarkers to detect septic patients with immunoparalysis could offer new epigenetic-based strategies to predict short- and long-term pathological events related to this life-threatening state. This review describes the most relevant epigenetic mechanisms underlying alterations in the innate and adaptive immune responses described in sepsis and septic shock, and their consequences for immunosuppression states, providing several candidates to become epigenetic biomarkers that could improve sepsis management and help predict immunosuppression in postseptic patients.


Asunto(s)
Epigénesis Genética , Terapia de Inmunosupresión , Sepsis/genética , Choque Séptico/genética , Inmunidad Adaptativa , Biomarcadores , Metilación de ADN , Histonas , Humanos , Inmunidad Innata , ARN no Traducido , Sepsis/inmunología , Choque Séptico/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...